Flipper/Applications/Official/source-OLDER/xMasterX/airmouse/tracking/util/rotation.h

157 lines
6.1 KiB
C++

/*
* Copyright 2019 Google Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARDBOARD_SDK_UTIL_ROTATION_H_
#define CARDBOARD_SDK_UTIL_ROTATION_H_
#include "matrix_3x3.h"
#include "vector.h"
#include "vectorutils.h"
namespace cardboard {
// The Rotation class represents a rotation around a 3-dimensional axis. It
// uses normalized quaternions internally to make the math robust.
class Rotation {
public:
// Convenience typedefs for vector of the correct type.
typedef Vector<3> VectorType;
typedef Vector<4> QuaternionType;
// The default constructor creates an identity Rotation, which has no effect.
Rotation() {
quat_.Set(0, 0, 0, 1);
}
// Returns an identity Rotation, which has no effect.
static Rotation Identity() {
return Rotation();
}
// Sets the Rotation from a quaternion (4D vector), which is first normalized.
void SetQuaternion(const QuaternionType& quaternion) {
quat_ = Normalized(quaternion);
}
// Returns the Rotation as a normalized quaternion (4D vector).
const QuaternionType& GetQuaternion() const {
return quat_;
}
// Sets the Rotation to rotate by the given angle around the given axis,
// following the right-hand rule. The axis does not need to be unit
// length. If it is zero length, this results in an identity Rotation.
void SetAxisAndAngle(const VectorType& axis, double angle);
// Returns the right-hand rule axis and angle corresponding to the
// Rotation. If the Rotation is the identity rotation, this returns the +X
// axis and an angle of 0.
void GetAxisAndAngle(VectorType* axis, double* angle) const;
// Convenience function that constructs and returns a Rotation given an axis
// and angle.
static Rotation FromAxisAndAngle(const VectorType& axis, double angle) {
Rotation r;
r.SetAxisAndAngle(axis, angle);
return r;
}
// Convenience function that constructs and returns a Rotation given a
// quaternion.
static Rotation FromQuaternion(const QuaternionType& quat) {
Rotation r;
r.SetQuaternion(quat);
return r;
}
// Convenience function that constructs and returns a Rotation given a
// rotation matrix R with $R^\top R = I && det(R) = 1$.
static Rotation FromRotationMatrix(const Matrix3x3& mat);
// Convenience function that constructs and returns a Rotation given Euler
// angles that are applied in the order of rotate-Z by roll, rotate-X by
// pitch, rotate-Y by yaw (same as GetRollPitchYaw).
static Rotation FromRollPitchYaw(double roll, double pitch, double yaw) {
VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
return FromAxisAndAngle(z, roll) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(y, yaw));
}
// Convenience function that constructs and returns a Rotation given Euler
// angles that are applied in the order of rotate-Y by yaw, rotate-X by
// pitch, rotate-Z by roll (same as GetYawPitchRoll).
static Rotation FromYawPitchRoll(double yaw, double pitch, double roll) {
VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
return FromAxisAndAngle(y, yaw) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(z, roll));
}
// Constructs and returns a Rotation that rotates one vector to another along
// the shortest arc. This returns an identity rotation if either vector has
// zero length.
static Rotation RotateInto(const VectorType& from, const VectorType& to);
// The negation operator returns the inverse rotation.
friend Rotation operator-(const Rotation& r) {
// Because we store normalized quaternions, the inverse is found by
// negating the vector part.
return Rotation(-r.quat_[0], -r.quat_[1], -r.quat_[2], r.quat_[3]);
}
// Appends a rotation to this one.
Rotation& operator*=(const Rotation& r) {
const QuaternionType& qr = r.quat_;
QuaternionType& qt = quat_;
SetQuaternion(QuaternionType(
qr[3] * qt[0] + qr[0] * qt[3] + qr[2] * qt[1] - qr[1] * qt[2],
qr[3] * qt[1] + qr[1] * qt[3] + qr[0] * qt[2] - qr[2] * qt[0],
qr[3] * qt[2] + qr[2] * qt[3] + qr[1] * qt[0] - qr[0] * qt[1],
qr[3] * qt[3] - qr[0] * qt[0] - qr[1] * qt[1] - qr[2] * qt[2]));
return *this;
}
// Binary multiplication operator - returns a composite Rotation.
friend const Rotation operator*(const Rotation& r0, const Rotation& r1) {
Rotation r = r0;
r *= r1;
return r;
}
// Multiply a Rotation and a Vector to get a Vector.
VectorType operator*(const VectorType& v) const;
private:
// Private constructor that builds a Rotation from quaternion components.
Rotation(double q0, double q1, double q2, double q3)
: quat_(q0, q1, q2, q3) {
}
// Applies a Rotation to a Vector to rotate the Vector. Method borrowed from:
// http://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
VectorType ApplyToVector(const VectorType& v) const {
VectorType im(quat_[0], quat_[1], quat_[2]);
VectorType temp = 2.0 * Cross(im, v);
return v + quat_[3] * temp + Cross(im, temp);
}
// The rotation represented as a normalized quaternion. (Unit quaternions are
// required for constructing rotation matrices, so it makes sense to always
// store them that way.) The vector part is in the first 3 elements, and the
// scalar part is in the last element.
QuaternionType quat_;
};
} // namespace cardboard
#endif // CARDBOARD_SDK_UTIL_ROTATION_H_