/* * Copyright 2019 Google Inc. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef CARDBOARD_SDK_UTIL_ROTATION_H_ #define CARDBOARD_SDK_UTIL_ROTATION_H_ #include "matrix_3x3.h" #include "vector.h" #include "vectorutils.h" namespace cardboard { // The Rotation class represents a rotation around a 3-dimensional axis. It // uses normalized quaternions internally to make the math robust. class Rotation { public: // Convenience typedefs for vector of the correct type. typedef Vector<3> VectorType; typedef Vector<4> QuaternionType; // The default constructor creates an identity Rotation, which has no effect. Rotation() { quat_.Set(0, 0, 0, 1); } // Returns an identity Rotation, which has no effect. static Rotation Identity() { return Rotation(); } // Sets the Rotation from a quaternion (4D vector), which is first normalized. void SetQuaternion(const QuaternionType& quaternion) { quat_ = Normalized(quaternion); } // Returns the Rotation as a normalized quaternion (4D vector). const QuaternionType& GetQuaternion() const { return quat_; } // Sets the Rotation to rotate by the given angle around the given axis, // following the right-hand rule. The axis does not need to be unit // length. If it is zero length, this results in an identity Rotation. void SetAxisAndAngle(const VectorType& axis, double angle); // Returns the right-hand rule axis and angle corresponding to the // Rotation. If the Rotation is the identity rotation, this returns the +X // axis and an angle of 0. void GetAxisAndAngle(VectorType* axis, double* angle) const; // Convenience function that constructs and returns a Rotation given an axis // and angle. static Rotation FromAxisAndAngle(const VectorType& axis, double angle) { Rotation r; r.SetAxisAndAngle(axis, angle); return r; } // Convenience function that constructs and returns a Rotation given a // quaternion. static Rotation FromQuaternion(const QuaternionType& quat) { Rotation r; r.SetQuaternion(quat); return r; } // Convenience function that constructs and returns a Rotation given a // rotation matrix R with $R^\top R = I && det(R) = 1$. static Rotation FromRotationMatrix(const Matrix3x3& mat); // Convenience function that constructs and returns a Rotation given Euler // angles that are applied in the order of rotate-Z by roll, rotate-X by // pitch, rotate-Y by yaw (same as GetRollPitchYaw). static Rotation FromRollPitchYaw(double roll, double pitch, double yaw) { VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1); return FromAxisAndAngle(z, roll) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(y, yaw)); } // Convenience function that constructs and returns a Rotation given Euler // angles that are applied in the order of rotate-Y by yaw, rotate-X by // pitch, rotate-Z by roll (same as GetYawPitchRoll). static Rotation FromYawPitchRoll(double yaw, double pitch, double roll) { VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1); return FromAxisAndAngle(y, yaw) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(z, roll)); } // Constructs and returns a Rotation that rotates one vector to another along // the shortest arc. This returns an identity rotation if either vector has // zero length. static Rotation RotateInto(const VectorType& from, const VectorType& to); // The negation operator returns the inverse rotation. friend Rotation operator-(const Rotation& r) { // Because we store normalized quaternions, the inverse is found by // negating the vector part. return Rotation(-r.quat_[0], -r.quat_[1], -r.quat_[2], r.quat_[3]); } // Appends a rotation to this one. Rotation& operator*=(const Rotation& r) { const QuaternionType& qr = r.quat_; QuaternionType& qt = quat_; SetQuaternion(QuaternionType( qr[3] * qt[0] + qr[0] * qt[3] + qr[2] * qt[1] - qr[1] * qt[2], qr[3] * qt[1] + qr[1] * qt[3] + qr[0] * qt[2] - qr[2] * qt[0], qr[3] * qt[2] + qr[2] * qt[3] + qr[1] * qt[0] - qr[0] * qt[1], qr[3] * qt[3] - qr[0] * qt[0] - qr[1] * qt[1] - qr[2] * qt[2])); return *this; } // Binary multiplication operator - returns a composite Rotation. friend const Rotation operator*(const Rotation& r0, const Rotation& r1) { Rotation r = r0; r *= r1; return r; } // Multiply a Rotation and a Vector to get a Vector. VectorType operator*(const VectorType& v) const; private: // Private constructor that builds a Rotation from quaternion components. Rotation(double q0, double q1, double q2, double q3) : quat_(q0, q1, q2, q3) { } // Applies a Rotation to a Vector to rotate the Vector. Method borrowed from: // http://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/ VectorType ApplyToVector(const VectorType& v) const { VectorType im(quat_[0], quat_[1], quat_[2]); VectorType temp = 2.0 * Cross(im, v); return v + quat_[3] * temp + Cross(im, temp); } // The rotation represented as a normalized quaternion. (Unit quaternions are // required for constructing rotation matrices, so it makes sense to always // store them that way.) The vector part is in the first 3 elements, and the // scalar part is in the last element. QuaternionType quat_; }; } // namespace cardboard #endif // CARDBOARD_SDK_UTIL_ROTATION_H_