Flipper/Applications/Official/source-OLDER/xMasterX/airmouse/tracking/calibration_data.cc

85 lines
2.2 KiB
C++

#include <furi.h>
#include <furi_hal.h>
#define TAG "tracker"
#include "calibration_data.h"
#include <cmath>
#include <algorithm>
// Student's distribution T value for 95% (two-sided) confidence interval.
static const double Tn = 1.960;
// Number of samples (degrees of freedom) for the corresponding T values.
static const int Nn = 200;
void CalibrationData::reset()
{
complete = false;
count = 0;
sum = Vector::Zero();
sumSq = Vector::Zero();
mean = Vector::Zero();
median = Vector::Zero();
sigma = Vector::Zero();
delta = Vector::Zero();
xData.clear();
yData.clear();
zData.clear();
}
bool CalibrationData::add(Vector& data)
{
if (complete) {
return true;
}
xData.push_back(data[0]);
yData.push_back(data[1]);
zData.push_back(data[2]);
sum += data;
sumSq += data * data;
count++;
if (count >= Nn) {
calcDelta();
complete = true;
}
return complete;
}
static inline double medianOf(std::vector<double>& list)
{
std::sort(list.begin(), list.end());
int count = list.size();
int middle = count / 2;
return (count % 2 == 1) ? list[middle] : (list[middle - 1] + list[middle]) / 2.0l;
}
void CalibrationData::calcDelta()
{
median.Set(medianOf(xData), medianOf(yData), medianOf(zData));
mean = sum / count;
Vector m2 = mean * mean;
Vector d = sumSq / count - m2;
Vector s2 = (d * count) / (count - 1);
sigma = Vector(std::sqrt(d[0]), std::sqrt(d[1]), std::sqrt(d[2]));
Vector s = Vector(std::sqrt(s2[0]), std::sqrt(s2[1]), std::sqrt(s2[2]));
delta = s * Tn / std::sqrt((double)count);
Vector low = mean - delta;
Vector high = mean + delta;
FURI_LOG_I(TAG,
"M[x] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
low[0], high[0], median[0], mean[0], delta[0], sigma[0]);
FURI_LOG_I(TAG,
"M[y] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
low[1], high[1], median[1], mean[1], delta[1], sigma[1]);
FURI_LOG_I(TAG,
"M[z] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
low[2], high[2], median[2], mean[2], delta[2], sigma[2]);
}