mirror of
https://github.com/UberGuidoZ/Flipper.git
synced 2025-01-09 07:10:17 +00:00
85 lines
2.2 KiB
C++
85 lines
2.2 KiB
C++
#include <furi.h>
|
|
#include <furi_hal.h>
|
|
|
|
#define TAG "tracker"
|
|
|
|
#include "calibration_data.h"
|
|
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
|
|
// Student's distribution T value for 95% (two-sided) confidence interval.
|
|
static const double Tn = 1.960;
|
|
|
|
// Number of samples (degrees of freedom) for the corresponding T values.
|
|
static const int Nn = 200;
|
|
|
|
void CalibrationData::reset()
|
|
{
|
|
complete = false;
|
|
count = 0;
|
|
sum = Vector::Zero();
|
|
sumSq = Vector::Zero();
|
|
mean = Vector::Zero();
|
|
median = Vector::Zero();
|
|
sigma = Vector::Zero();
|
|
delta = Vector::Zero();
|
|
xData.clear();
|
|
yData.clear();
|
|
zData.clear();
|
|
}
|
|
|
|
bool CalibrationData::add(Vector& data)
|
|
{
|
|
if (complete) {
|
|
return true;
|
|
}
|
|
|
|
xData.push_back(data[0]);
|
|
yData.push_back(data[1]);
|
|
zData.push_back(data[2]);
|
|
|
|
sum += data;
|
|
sumSq += data * data;
|
|
count++;
|
|
|
|
if (count >= Nn) {
|
|
calcDelta();
|
|
complete = true;
|
|
}
|
|
|
|
return complete;
|
|
}
|
|
|
|
static inline double medianOf(std::vector<double>& list)
|
|
{
|
|
std::sort(list.begin(), list.end());
|
|
int count = list.size();
|
|
int middle = count / 2;
|
|
return (count % 2 == 1) ? list[middle] : (list[middle - 1] + list[middle]) / 2.0l;
|
|
}
|
|
|
|
void CalibrationData::calcDelta()
|
|
{
|
|
median.Set(medianOf(xData), medianOf(yData), medianOf(zData));
|
|
|
|
mean = sum / count;
|
|
Vector m2 = mean * mean;
|
|
Vector d = sumSq / count - m2;
|
|
Vector s2 = (d * count) / (count - 1);
|
|
sigma = Vector(std::sqrt(d[0]), std::sqrt(d[1]), std::sqrt(d[2]));
|
|
Vector s = Vector(std::sqrt(s2[0]), std::sqrt(s2[1]), std::sqrt(s2[2]));
|
|
delta = s * Tn / std::sqrt((double)count);
|
|
Vector low = mean - delta;
|
|
Vector high = mean + delta;
|
|
|
|
FURI_LOG_I(TAG,
|
|
"M[x] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
|
|
low[0], high[0], median[0], mean[0], delta[0], sigma[0]);
|
|
FURI_LOG_I(TAG,
|
|
"M[y] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
|
|
low[1], high[1], median[1], mean[1], delta[1], sigma[1]);
|
|
FURI_LOG_I(TAG,
|
|
"M[z] = { %f ... %f } // median = %f // avg = %f // delta = %f // sigma = %f",
|
|
low[2], high[2], median[2], mean[2], delta[2], sigma[2]);
|
|
} |