Flipper/Applications/Official/source-OLDER/xMasterX/airmouse/tracking/util/rotation.cc

118 lines
4.0 KiB
C++

/*
* Copyright 2019 Google Inc. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rotation.h"
#include <cmath>
#include <limits>
#include "vectorutils.h"
namespace cardboard {
void Rotation::SetAxisAndAngle(const VectorType& axis, double angle)
{
VectorType unit_axis = axis;
if (!Normalize(&unit_axis)) {
*this = Identity();
} else {
double a = angle / 2;
const double s = sin(a);
const VectorType v(unit_axis * s);
SetQuaternion(QuaternionType(v[0], v[1], v[2], cos(a)));
}
}
Rotation Rotation::FromRotationMatrix(const Matrix3x3& mat)
{
static const double kOne = 1.0;
static const double kFour = 4.0;
const double d0 = mat(0, 0), d1 = mat(1, 1), d2 = mat(2, 2);
const double ww = kOne + d0 + d1 + d2;
const double xx = kOne + d0 - d1 - d2;
const double yy = kOne - d0 + d1 - d2;
const double zz = kOne - d0 - d1 + d2;
const double max = std::max(ww, std::max(xx, std::max(yy, zz)));
if (ww == max) {
const double w4 = sqrt(ww * kFour);
return Rotation::FromQuaternion(QuaternionType((mat(2, 1) - mat(1, 2)) / w4,
(mat(0, 2) - mat(2, 0)) / w4, (mat(1, 0) - mat(0, 1)) / w4, w4 / kFour));
}
if (xx == max) {
const double x4 = sqrt(xx * kFour);
return Rotation::FromQuaternion(QuaternionType(x4 / kFour, (mat(0, 1) + mat(1, 0)) / x4,
(mat(0, 2) + mat(2, 0)) / x4, (mat(2, 1) - mat(1, 2)) / x4));
}
if (yy == max) {
const double y4 = sqrt(yy * kFour);
return Rotation::FromQuaternion(QuaternionType((mat(0, 1) + mat(1, 0)) / y4, y4 / kFour,
(mat(1, 2) + mat(2, 1)) / y4, (mat(0, 2) - mat(2, 0)) / y4));
}
// zz is the largest component.
const double z4 = sqrt(zz * kFour);
return Rotation::FromQuaternion(QuaternionType((mat(0, 2) + mat(2, 0)) / z4,
(mat(1, 2) + mat(2, 1)) / z4, z4 / kFour, (mat(1, 0) - mat(0, 1)) / z4));
}
void Rotation::GetAxisAndAngle(VectorType* axis, double* angle) const
{
VectorType vec(quat_[0], quat_[1], quat_[2]);
if (Normalize(&vec)) {
*angle = 2 * acos(quat_[3]);
*axis = vec;
} else {
*axis = VectorType(1, 0, 0);
*angle = 0.0;
}
}
Rotation Rotation::RotateInto(const VectorType& from, const VectorType& to)
{
static const double kTolerance = std::numeric_limits<double>::epsilon() * 100;
// Directly build the quaternion using the following technique:
// http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final
const double norm_u_norm_v = sqrt(LengthSquared(from) * LengthSquared(to));
double real_part = norm_u_norm_v + Dot(from, to);
VectorType w;
if (real_part < kTolerance * norm_u_norm_v) {
// If |from| and |to| are exactly opposite, rotate 180 degrees around an
// arbitrary orthogonal axis. Axis normalization can happen later, when we
// normalize the quaternion.
real_part = 0.0;
w = (abs(from[0]) > abs(from[2])) ? VectorType(-from[1], from[0], 0)
: VectorType(0, -from[2], from[1]);
} else {
// Otherwise, build the quaternion the standard way.
w = Cross(from, to);
}
// Build and return a normalized quaternion.
// Note that Rotation::FromQuaternion automatically performs normalization.
return Rotation::FromQuaternion(QuaternionType(w[0], w[1], w[2], real_part));
}
Rotation::VectorType Rotation::operator*(const Rotation::VectorType& v) const
{
return ApplyToVector(v);
}
} // namespace cardboard