mirror of
https://github.com/UberGuidoZ/Flipper.git
synced 2025-01-13 01:00:13 +00:00
118 lines
4.0 KiB
C++
118 lines
4.0 KiB
C++
|
/*
|
||
|
* Copyright 2019 Google Inc. All Rights Reserved.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
#include "rotation.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <limits>
|
||
|
|
||
|
#include "vectorutils.h"
|
||
|
|
||
|
namespace cardboard {
|
||
|
|
||
|
void Rotation::SetAxisAndAngle(const VectorType& axis, double angle)
|
||
|
{
|
||
|
VectorType unit_axis = axis;
|
||
|
if (!Normalize(&unit_axis)) {
|
||
|
*this = Identity();
|
||
|
} else {
|
||
|
double a = angle / 2;
|
||
|
const double s = sin(a);
|
||
|
const VectorType v(unit_axis * s);
|
||
|
SetQuaternion(QuaternionType(v[0], v[1], v[2], cos(a)));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Rotation Rotation::FromRotationMatrix(const Matrix3x3& mat)
|
||
|
{
|
||
|
static const double kOne = 1.0;
|
||
|
static const double kFour = 4.0;
|
||
|
|
||
|
const double d0 = mat(0, 0), d1 = mat(1, 1), d2 = mat(2, 2);
|
||
|
const double ww = kOne + d0 + d1 + d2;
|
||
|
const double xx = kOne + d0 - d1 - d2;
|
||
|
const double yy = kOne - d0 + d1 - d2;
|
||
|
const double zz = kOne - d0 - d1 + d2;
|
||
|
|
||
|
const double max = std::max(ww, std::max(xx, std::max(yy, zz)));
|
||
|
if (ww == max) {
|
||
|
const double w4 = sqrt(ww * kFour);
|
||
|
return Rotation::FromQuaternion(QuaternionType((mat(2, 1) - mat(1, 2)) / w4,
|
||
|
(mat(0, 2) - mat(2, 0)) / w4, (mat(1, 0) - mat(0, 1)) / w4, w4 / kFour));
|
||
|
}
|
||
|
|
||
|
if (xx == max) {
|
||
|
const double x4 = sqrt(xx * kFour);
|
||
|
return Rotation::FromQuaternion(QuaternionType(x4 / kFour, (mat(0, 1) + mat(1, 0)) / x4,
|
||
|
(mat(0, 2) + mat(2, 0)) / x4, (mat(2, 1) - mat(1, 2)) / x4));
|
||
|
}
|
||
|
|
||
|
if (yy == max) {
|
||
|
const double y4 = sqrt(yy * kFour);
|
||
|
return Rotation::FromQuaternion(QuaternionType((mat(0, 1) + mat(1, 0)) / y4, y4 / kFour,
|
||
|
(mat(1, 2) + mat(2, 1)) / y4, (mat(0, 2) - mat(2, 0)) / y4));
|
||
|
}
|
||
|
|
||
|
// zz is the largest component.
|
||
|
const double z4 = sqrt(zz * kFour);
|
||
|
return Rotation::FromQuaternion(QuaternionType((mat(0, 2) + mat(2, 0)) / z4,
|
||
|
(mat(1, 2) + mat(2, 1)) / z4, z4 / kFour, (mat(1, 0) - mat(0, 1)) / z4));
|
||
|
}
|
||
|
|
||
|
void Rotation::GetAxisAndAngle(VectorType* axis, double* angle) const
|
||
|
{
|
||
|
VectorType vec(quat_[0], quat_[1], quat_[2]);
|
||
|
if (Normalize(&vec)) {
|
||
|
*angle = 2 * acos(quat_[3]);
|
||
|
*axis = vec;
|
||
|
} else {
|
||
|
*axis = VectorType(1, 0, 0);
|
||
|
*angle = 0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Rotation Rotation::RotateInto(const VectorType& from, const VectorType& to)
|
||
|
{
|
||
|
static const double kTolerance = std::numeric_limits<double>::epsilon() * 100;
|
||
|
|
||
|
// Directly build the quaternion using the following technique:
|
||
|
// http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final
|
||
|
const double norm_u_norm_v = sqrt(LengthSquared(from) * LengthSquared(to));
|
||
|
double real_part = norm_u_norm_v + Dot(from, to);
|
||
|
VectorType w;
|
||
|
if (real_part < kTolerance * norm_u_norm_v) {
|
||
|
// If |from| and |to| are exactly opposite, rotate 180 degrees around an
|
||
|
// arbitrary orthogonal axis. Axis normalization can happen later, when we
|
||
|
// normalize the quaternion.
|
||
|
real_part = 0.0;
|
||
|
w = (abs(from[0]) > abs(from[2])) ? VectorType(-from[1], from[0], 0)
|
||
|
: VectorType(0, -from[2], from[1]);
|
||
|
} else {
|
||
|
// Otherwise, build the quaternion the standard way.
|
||
|
w = Cross(from, to);
|
||
|
}
|
||
|
|
||
|
// Build and return a normalized quaternion.
|
||
|
// Note that Rotation::FromQuaternion automatically performs normalization.
|
||
|
return Rotation::FromQuaternion(QuaternionType(w[0], w[1], w[2], real_part));
|
||
|
}
|
||
|
|
||
|
Rotation::VectorType Rotation::operator*(const Rotation::VectorType& v) const
|
||
|
{
|
||
|
return ApplyToVector(v);
|
||
|
}
|
||
|
|
||
|
} // namespace cardboard
|