mirror of
https://github.com/UberGuidoZ/Flipper.git
synced 2025-01-25 15:10:11 +00:00
157 lines
6.1 KiB
C
157 lines
6.1 KiB
C
|
/*
|
||
|
* Copyright 2019 Google Inc. All Rights Reserved.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
#ifndef CARDBOARD_SDK_UTIL_ROTATION_H_
|
||
|
#define CARDBOARD_SDK_UTIL_ROTATION_H_
|
||
|
|
||
|
#include "matrix_3x3.h"
|
||
|
#include "vector.h"
|
||
|
#include "vectorutils.h"
|
||
|
|
||
|
namespace cardboard {
|
||
|
|
||
|
// The Rotation class represents a rotation around a 3-dimensional axis. It
|
||
|
// uses normalized quaternions internally to make the math robust.
|
||
|
class Rotation {
|
||
|
public:
|
||
|
// Convenience typedefs for vector of the correct type.
|
||
|
typedef Vector<3> VectorType;
|
||
|
typedef Vector<4> QuaternionType;
|
||
|
|
||
|
// The default constructor creates an identity Rotation, which has no effect.
|
||
|
Rotation() {
|
||
|
quat_.Set(0, 0, 0, 1);
|
||
|
}
|
||
|
|
||
|
// Returns an identity Rotation, which has no effect.
|
||
|
static Rotation Identity() {
|
||
|
return Rotation();
|
||
|
}
|
||
|
|
||
|
// Sets the Rotation from a quaternion (4D vector), which is first normalized.
|
||
|
void SetQuaternion(const QuaternionType& quaternion) {
|
||
|
quat_ = Normalized(quaternion);
|
||
|
}
|
||
|
|
||
|
// Returns the Rotation as a normalized quaternion (4D vector).
|
||
|
const QuaternionType& GetQuaternion() const {
|
||
|
return quat_;
|
||
|
}
|
||
|
|
||
|
// Sets the Rotation to rotate by the given angle around the given axis,
|
||
|
// following the right-hand rule. The axis does not need to be unit
|
||
|
// length. If it is zero length, this results in an identity Rotation.
|
||
|
void SetAxisAndAngle(const VectorType& axis, double angle);
|
||
|
|
||
|
// Returns the right-hand rule axis and angle corresponding to the
|
||
|
// Rotation. If the Rotation is the identity rotation, this returns the +X
|
||
|
// axis and an angle of 0.
|
||
|
void GetAxisAndAngle(VectorType* axis, double* angle) const;
|
||
|
|
||
|
// Convenience function that constructs and returns a Rotation given an axis
|
||
|
// and angle.
|
||
|
static Rotation FromAxisAndAngle(const VectorType& axis, double angle) {
|
||
|
Rotation r;
|
||
|
r.SetAxisAndAngle(axis, angle);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// Convenience function that constructs and returns a Rotation given a
|
||
|
// quaternion.
|
||
|
static Rotation FromQuaternion(const QuaternionType& quat) {
|
||
|
Rotation r;
|
||
|
r.SetQuaternion(quat);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// Convenience function that constructs and returns a Rotation given a
|
||
|
// rotation matrix R with $R^\top R = I && det(R) = 1$.
|
||
|
static Rotation FromRotationMatrix(const Matrix3x3& mat);
|
||
|
|
||
|
// Convenience function that constructs and returns a Rotation given Euler
|
||
|
// angles that are applied in the order of rotate-Z by roll, rotate-X by
|
||
|
// pitch, rotate-Y by yaw (same as GetRollPitchYaw).
|
||
|
static Rotation FromRollPitchYaw(double roll, double pitch, double yaw) {
|
||
|
VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
|
||
|
return FromAxisAndAngle(z, roll) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(y, yaw));
|
||
|
}
|
||
|
|
||
|
// Convenience function that constructs and returns a Rotation given Euler
|
||
|
// angles that are applied in the order of rotate-Y by yaw, rotate-X by
|
||
|
// pitch, rotate-Z by roll (same as GetYawPitchRoll).
|
||
|
static Rotation FromYawPitchRoll(double yaw, double pitch, double roll) {
|
||
|
VectorType x(1, 0, 0), y(0, 1, 0), z(0, 0, 1);
|
||
|
return FromAxisAndAngle(y, yaw) * (FromAxisAndAngle(x, pitch) * FromAxisAndAngle(z, roll));
|
||
|
}
|
||
|
|
||
|
// Constructs and returns a Rotation that rotates one vector to another along
|
||
|
// the shortest arc. This returns an identity rotation if either vector has
|
||
|
// zero length.
|
||
|
static Rotation RotateInto(const VectorType& from, const VectorType& to);
|
||
|
|
||
|
// The negation operator returns the inverse rotation.
|
||
|
friend Rotation operator-(const Rotation& r) {
|
||
|
// Because we store normalized quaternions, the inverse is found by
|
||
|
// negating the vector part.
|
||
|
return Rotation(-r.quat_[0], -r.quat_[1], -r.quat_[2], r.quat_[3]);
|
||
|
}
|
||
|
|
||
|
// Appends a rotation to this one.
|
||
|
Rotation& operator*=(const Rotation& r) {
|
||
|
const QuaternionType& qr = r.quat_;
|
||
|
QuaternionType& qt = quat_;
|
||
|
SetQuaternion(QuaternionType(
|
||
|
qr[3] * qt[0] + qr[0] * qt[3] + qr[2] * qt[1] - qr[1] * qt[2],
|
||
|
qr[3] * qt[1] + qr[1] * qt[3] + qr[0] * qt[2] - qr[2] * qt[0],
|
||
|
qr[3] * qt[2] + qr[2] * qt[3] + qr[1] * qt[0] - qr[0] * qt[1],
|
||
|
qr[3] * qt[3] - qr[0] * qt[0] - qr[1] * qt[1] - qr[2] * qt[2]));
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// Binary multiplication operator - returns a composite Rotation.
|
||
|
friend const Rotation operator*(const Rotation& r0, const Rotation& r1) {
|
||
|
Rotation r = r0;
|
||
|
r *= r1;
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
// Multiply a Rotation and a Vector to get a Vector.
|
||
|
VectorType operator*(const VectorType& v) const;
|
||
|
|
||
|
private:
|
||
|
// Private constructor that builds a Rotation from quaternion components.
|
||
|
Rotation(double q0, double q1, double q2, double q3)
|
||
|
: quat_(q0, q1, q2, q3) {
|
||
|
}
|
||
|
|
||
|
// Applies a Rotation to a Vector to rotate the Vector. Method borrowed from:
|
||
|
// http://blog.molecular-matters.com/2013/05/24/a-faster-quaternion-vector-multiplication/
|
||
|
VectorType ApplyToVector(const VectorType& v) const {
|
||
|
VectorType im(quat_[0], quat_[1], quat_[2]);
|
||
|
VectorType temp = 2.0 * Cross(im, v);
|
||
|
return v + quat_[3] * temp + Cross(im, temp);
|
||
|
}
|
||
|
|
||
|
// The rotation represented as a normalized quaternion. (Unit quaternions are
|
||
|
// required for constructing rotation matrices, so it makes sense to always
|
||
|
// store them that way.) The vector part is in the first 3 elements, and the
|
||
|
// scalar part is in the last element.
|
||
|
QuaternionType quat_;
|
||
|
};
|
||
|
|
||
|
} // namespace cardboard
|
||
|
|
||
|
#endif // CARDBOARD_SDK_UTIL_ROTATION_H_
|