Flipper/Applications/Official/source-OLDER/grnch/unitemp/sensors/BMx280.c

352 lines
14 KiB
C
Raw Normal View History

2022-12-29 06:30:12 +00:00
/*
Unitemp - Universal temperature reader
Copyright (C) 2022 Victor Nikitchuk (https://github.com/quen0n)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "BMx280.h"
const SensorType BMP280 = {
.typename = "BMP280",
.interface = &I2C,
.datatype = UT_TEMPERATURE | UT_PRESSURE,
.pollingInterval = 500,
.allocator = unitemp_BMx280_alloc,
.mem_releaser = unitemp_BMx280_free,
.initializer = unitemp_BMx280_init,
.deinitializer = unitemp_BMx280_deinit,
.updater = unitemp_BMx280_update};
const SensorType BME280 = {
.typename = "BME280",
.interface = &I2C,
.datatype = UT_TEMPERATURE | UT_HUMIDITY | UT_PRESSURE,
.pollingInterval = 500,
.allocator = unitemp_BMx280_alloc,
.mem_releaser = unitemp_BMx280_free,
.initializer = unitemp_BMx280_init,
.deinitializer = unitemp_BMx280_deinit,
.updater = unitemp_BMx280_update};
//Интервал обновления калибровочных значений
#define BOSCH_CAL_UPDATE_INTERVAL 60000
#define TEMP_CAL_START_ADDR 0x88
#define PRESS_CAL_START_ADDR 0x8E
#define HUM_CAL_H1_ADDR 0xA1
#define HUM_CAL_H2_ADDR 0xE1
#define BMP280_ID 0x58
#define BME280_ID 0x60
#define BMx280_I2C_ADDR_MIN (0x76 << 1)
#define BMx280_I2C_ADDR_MAX (0x77 << 1)
#define BMx280_REG_STATUS 0xF3
#define BMx280_REG_CTRL_MEAS 0xF4
#define BMx280_REG_CONFIG 0xF5
#define BME280_REG_CTRL_HUM 0xF2
//Преддескретизация температуры
#define BMx280_TEMP_OVERSAMPLING_SKIP 0b00000000
#define BMx280_TEMP_OVERSAMPLING_1 0b00100000
#define BMx280_TEMP_OVERSAMPLING_2 0b01000000
#define BMx280_TEMP_OVERSAMPLING_4 0b01100000
#define BMx280_TEMP_OVERSAMPLING_8 0b10000000
#define BMx280_TEMP_OVERSAMPLING_16 0b10100000
//Преддескретизация давления
#define BMx280_PRESS_OVERSAMPLING_SKIP 0b00000000
#define BMx280_PRESS_OVERSAMPLING_1 0b00000100
#define BMx280_PRESS_OVERSAMPLING_2 0b00001000
#define BMx280_PRESS_OVERSAMPLING_4 0b00001100
#define BMx280_PRESS_OVERSAMPLING_8 0b00010000
#define BMx280_PRESS_OVERSAMPLING_16 0b00010100
//Преддескретизация влажности
#define BME280_HUM_OVERSAMPLING_SKIP 0b00000000
#define BME280_HUM_OVERSAMPLING_1 0b00000001
#define BME280_HUM_OVERSAMPLING_2 0b00000010
#define BME280_HUM_OVERSAMPLING_4 0b00000011
#define BME280_HUM_OVERSAMPLING_8 0b00000100
#define BME280_HUM_OVERSAMPLING_16 0b00000101u
//Режимы работы датчика
#define BMx280_MODE_SLEEP 0b00000000 //Наелся и спит
#define BMx280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
#define BMx280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
//Период обновления в нормальном режиме
#define BMx280_STANDBY_TIME_0_5 0b00000000
#define BMx280_STANDBY_TIME_62_5 0b00100000
#define BMx280_STANDBY_TIME_125 0b01000000
#define BMx280_STANDBY_TIME_250 0b01100000
#define BMx280_STANDBY_TIME_500 0b10000000
#define BMx280_STANDBY_TIME_1000 0b10100000
#define BMx280_STANDBY_TIME_2000 0b11000000
#define BMx280_STANDBY_TIME_4000 0b11100000
//Коэффициент фильтрации значений
#define BMx280_FILTER_COEFF_1 0b00000000
#define BMx280_FILTER_COEFF_2 0b00000100
#define BMx280_FILTER_COEFF_4 0b00001000
#define BMx280_FILTER_COEFF_8 0b00001100
#define BMx280_FILTER_COEFF_16 0b00010000
//Разрешить работу по SPI
#define BMx280_SPI_3W_ENABLE 0b00000001
#define BMx280_SPI_3W_DISABLE 0b00000000
static float BMx280_compensate_temperature(I2CSensor* i2c_sensor, int32_t adc_T) {
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
int32_t var1, var2;
var1 = ((((adc_T >> 3) - ((int32_t)bmx280_instance->temp_cal.dig_T1 << 1))) *
((int32_t)bmx280_instance->temp_cal.dig_T2)) >>
11;
var2 = (((((adc_T >> 4) - ((int32_t)bmx280_instance->temp_cal.dig_T1)) *
((adc_T >> 4) - ((int32_t)bmx280_instance->temp_cal.dig_T1))) >>
12) *
((int32_t)bmx280_instance->temp_cal.dig_T3)) >>
14;
bmx280_instance->t_fine = var1 + var2;
return ((bmx280_instance->t_fine * 5 + 128) >> 8) / 100.0f;
}
static float BMx280_compensate_pressure(I2CSensor* i2c_sensor, int32_t adc_P) {
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
int32_t var1, var2;
uint32_t p;
var1 = (((int32_t)bmx280_instance->t_fine) >> 1) - (int32_t)64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t)bmx280_instance->press_cal.dig_P6);
var2 = var2 + ((var1 * ((int32_t)bmx280_instance->press_cal.dig_P5)) << 1);
var2 = (var2 >> 2) + (((int32_t)bmx280_instance->press_cal.dig_P4) << 16);
var1 = (((bmx280_instance->press_cal.dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) +
((((int32_t)bmx280_instance->press_cal.dig_P2) * var1) >> 1)) >>
18;
var1 = ((((32768 + var1)) * ((int32_t)bmx280_instance->press_cal.dig_P1)) >> 15);
if(var1 == 0) {
return 0; // avoid exception caused by division by zero
}
p = (((uint32_t)(((int32_t)1048576) - adc_P) - (var2 >> 12))) * 3125;
if(p < 0x80000000) {
p = (p << 1) / ((uint32_t)var1);
} else {
p = (p / (uint32_t)var1) * 2;
}
var1 = (((int32_t)bmx280_instance->press_cal.dig_P9) *
((int32_t)(((p >> 3) * (p >> 3)) >> 13))) >>
12;
var2 = (((int32_t)(p >> 2)) * ((int32_t)bmx280_instance->press_cal.dig_P8)) >> 13;
p = (uint32_t)((int32_t)p + ((var1 + var2 + bmx280_instance->press_cal.dig_P7) >> 4));
return p;
}
static float BMx280_compensate_humidity(I2CSensor* i2c_sensor, int32_t adc_H) {
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
int32_t v_x1_u32r;
v_x1_u32r = (bmx280_instance->t_fine - ((int32_t)76800));
v_x1_u32r =
(((((adc_H << 14) - (((int32_t)bmx280_instance->hum_cal.dig_H4) << 20) -
(((int32_t)bmx280_instance->hum_cal.dig_H5) * v_x1_u32r)) +
((int32_t)16384)) >>
15) *
(((((((v_x1_u32r * ((int32_t)bmx280_instance->hum_cal.dig_H6)) >> 10) *
(((v_x1_u32r * ((int32_t)bmx280_instance->hum_cal.dig_H3)) >> 11) +
((int32_t)32768))) >>
10) +
((int32_t)2097152)) *
((int32_t)bmx280_instance->hum_cal.dig_H2) +
8192) >>
14));
v_x1_u32r =
(v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
((int32_t)bmx280_instance->hum_cal.dig_H1)) >>
4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
return ((uint32_t)(v_x1_u32r >> 12)) / 1024.0f;
}
static bool bmx280_readCalValues(I2CSensor* i2c_sensor) {
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
if(!unitemp_i2c_readRegArray(
i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmx280_instance->temp_cal))
return false;
#ifdef UNITEMP_DEBUG
FURI_LOG_D(
APP_NAME,
"Sensor BMx280 (0x%02X) T1-T3: %d, %d, %d",
i2c_sensor->currentI2CAdr,
bmx280_instance->temp_cal.dig_T1,
bmx280_instance->temp_cal.dig_T2,
bmx280_instance->temp_cal.dig_T3);
#endif
if(!unitemp_i2c_readRegArray(
i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmx280_instance->press_cal))
return false;
#ifdef UNITEMP_DEBUG
FURI_LOG_D(
APP_NAME,
"Sensor BMx280 (0x%02X): P1-P9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
i2c_sensor->currentI2CAdr,
bmx280_instance->press_cal.dig_P1,
bmx280_instance->press_cal.dig_P2,
bmx280_instance->press_cal.dig_P3,
bmx280_instance->press_cal.dig_P4,
bmx280_instance->press_cal.dig_P5,
bmx280_instance->press_cal.dig_P6,
bmx280_instance->press_cal.dig_P7,
bmx280_instance->press_cal.dig_P8,
bmx280_instance->press_cal.dig_P9);
#endif
if(bmx280_instance->chip_id == BME280_ID) {
uint8_t buff[7] = {0};
if(!unitemp_i2c_readRegArray(i2c_sensor, HUM_CAL_H1_ADDR, 1, buff)) return false;
bmx280_instance->hum_cal.dig_H1 = buff[0];
if(!unitemp_i2c_readRegArray(i2c_sensor, HUM_CAL_H2_ADDR, 7, buff)) return false;
bmx280_instance->hum_cal.dig_H2 = (uint16_t)(buff[0] | ((uint16_t)buff[1] << 8));
bmx280_instance->hum_cal.dig_H3 = buff[2];
bmx280_instance->hum_cal.dig_H4 = ((int16_t)buff[3] << 4) | (buff[4] & 0x0F);
bmx280_instance->hum_cal.dig_H5 = (buff[4] & 0x0F) | ((int16_t)buff[5] << 4);
bmx280_instance->hum_cal.dig_H6 = buff[6];
#ifdef UNITEMP_DEBUG
FURI_LOG_D(
APP_NAME,
"Sensor BMx280 (0x%02X): H1-H6: %d, %d, %d, %d, %d, %d",
i2c_sensor->currentI2CAdr,
bmx280_instance->hum_cal.dig_H1,
bmx280_instance->hum_cal.dig_H2,
bmx280_instance->hum_cal.dig_H3,
bmx280_instance->hum_cal.dig_H4,
bmx280_instance->hum_cal.dig_H5,
bmx280_instance->hum_cal.dig_H6);
#endif
}
bmx280_instance->last_cal_update_time = furi_get_tick();
return true;
}
static bool bmp280_isMeasuring(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
return (bool)((unitemp_i2c_readReg(i2c_sensor, BMx280_REG_STATUS) & 0x08) >> 3);
}
bool unitemp_BMx280_alloc(Sensor* sensor, char* args) {
UNUSED(args);
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
BMx280_instance* bmx280_instance = malloc(sizeof(BMx280_instance));
if(bmx280_instance == NULL) {
FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
return false;
}
if(sensor->type == &BMP280) bmx280_instance->chip_id = BMP280_ID;
if(sensor->type == &BME280) bmx280_instance->chip_id = BME280_ID;
i2c_sensor->sensorInstance = bmx280_instance;
i2c_sensor->minI2CAdr = BMx280_I2C_ADDR_MIN;
i2c_sensor->maxI2CAdr = BMx280_I2C_ADDR_MAX;
return true;
}
bool unitemp_BMx280_init(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Перезагрузка
unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
//Чтение ID датчика
uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
if(id != BMP280_ID && id != BME280_ID) {
FURI_LOG_E(
APP_NAME,
"Sensor %s returned wrong ID 0x%02X, expected 0x%02X or 0x%02X",
sensor->name,
id,
BMP280_ID,
BME280_ID);
return false;
}
//Настройка режимов работы
if(id == BME280_ID) {
unitemp_i2c_writeReg(i2c_sensor, BME280_REG_CTRL_HUM, BME280_HUM_OVERSAMPLING_1);
unitemp_i2c_writeReg(
i2c_sensor, BME280_REG_CTRL_HUM, unitemp_i2c_readReg(i2c_sensor, BME280_REG_CTRL_HUM));
}
unitemp_i2c_writeReg(
i2c_sensor,
BMx280_REG_CTRL_MEAS,
BMx280_TEMP_OVERSAMPLING_2 | BMx280_PRESS_OVERSAMPLING_4 | BMx280_MODE_NORMAL);
//Настройка периода опроса и фильтрации значений
unitemp_i2c_writeReg(
i2c_sensor,
BMx280_REG_CONFIG,
BMx280_STANDBY_TIME_500 | BMx280_FILTER_COEFF_16 | BMx280_SPI_3W_DISABLE);
//Чтение калибровочных значений
if(!bmx280_readCalValues(i2c_sensor)) {
FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
return false;
}
return true;
}
bool unitemp_BMx280_deinit(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
//Перевод в сон
unitemp_i2c_writeReg(i2c_sensor, BMx280_REG_CTRL_MEAS, BMx280_MODE_SLEEP);
return true;
}
UnitempStatus unitemp_BMx280_update(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
BMx280_instance* instance = i2c_sensor->sensorInstance;
uint32_t t = furi_get_tick();
uint8_t buff[3];
//Проверка инициализированности датчика
unitemp_i2c_readRegArray(i2c_sensor, 0xF4, 2, buff);
if(buff[0] == 0) {
FURI_LOG_W(APP_NAME, "Sensor %s is not initialized!", sensor->name);
return UT_SENSORSTATUS_ERROR;
}
while(bmp280_isMeasuring(sensor)) {
if(furi_get_tick() - t > 100) {
return UT_SENSORSTATUS_TIMEOUT;
}
}
if(furi_get_tick() - instance->last_cal_update_time > BOSCH_CAL_UPDATE_INTERVAL) {
bmx280_readCalValues(i2c_sensor);
}
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF7, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_P = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFD, 2, buff)) return UT_SENSORSTATUS_TIMEOUT;
int32_t adc_H = ((uint16_t)buff[0] << 8) | buff[1];
sensor->temp = BMx280_compensate_temperature(i2c_sensor, adc_T);
sensor->pressure = BMx280_compensate_pressure(i2c_sensor, adc_P);
sensor->hum = BMx280_compensate_humidity(i2c_sensor, adc_H);
return UT_SENSORSTATUS_OK;
}
bool unitemp_BMx280_free(Sensor* sensor) {
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
free(i2c_sensor->sensorInstance);
return true;
}